Python API
Azure
- class RPA.Cloud.Azure.Azure(region: str = 'northeurope', robocorp_vault_name: Optional[str] = None)
Azure is a library for operating with Microsoft Azure API endpoints.
List of supported service names:
computervision (Azure Computer Vision API)
face (Azure Face API)
speech (Azure Speech Services API)
textanalytics (Azure Text Analytics API)
Azure authentication
Authentication for Azure is set with service subscription key which can be given to the library in two different ways.
Method 1 as environment variables, either service specific environment variable for example
AZURE_TEXTANALYTICS_KEY
or with common keyAZURE_SUBSCRIPTION_KEY
which will be used for all the services.Method 2 as Robocorp Vault secret. The vault name needs to be given in library init or with keyword
Set Robocorp Vault
. Secret keys are expected to match environment variable names.
Method 1. subscription key using environment variable
*** Settings *** Library RPA.Cloud.Azure *** Tasks *** Init Azure services # NO parameters for client, expecting to get subscription key # with AZURE_TEXTANALYTICS_KEY or AZURE_SUBSCRIPTION_KEY environment variable Init Text Analytics Service
Method 2. setting Robocorp Vault in the library init
*** Settings *** Library RPA.Cloud.Azure robocorp_vault_name=azure *** Tasks *** Init Azure services Init Text Analytics Service use_robocorp_vault=${TRUE}
Method 2. setting Robocorp Vault with keyword
*** Settings *** Library RPA.Cloud.Azure *** Tasks *** Init Azure services Set Robocorp Vault vault_name=googlecloud Init Text Analytics Service use_robocorp_vault=${TRUE}
References
List of supported language locales - Azure locale list
List of supported region identifiers - Azure region list
Examples
Robot Framework
This is a section which describes how to use the library in your Robot Framework tasks.
*** Settings *** Library RPA.Cloud.Azure *** Variables *** ${IMAGE_URL} IMAGE_URL ${FEATURES} Faces,ImageType *** Tasks *** Visioning image information Init Computer Vision Service &{result} Vision Analyze image_url=${IMAGE_URL} visual_features=${FEATURES} @{faces} Set Variable ${result}[faces] FOR ${face} IN @{faces} Log Age: ${face}[age], Gender: ${face}[gender], Rectangle: ${face}[faceRectangle] END
Python
This is a section which describes how to use the library in your own Python modules.
library = Azure() library.init_text_analytics_service() library.init_face_service() library.init_computer_vision_service() library.init_speech_service("westeurope") response = library.sentiment_analyze( text="The rooms were wonderful and the staff was helpful." ) response = library.detect_face( image_file=PATH_TO_FILE, face_attributes="age,gender,smile,hair,facialHair,emotion", ) for item in response: gender = item["faceAttributes"]["gender"] age = item["faceAttributes"]["age"] print(f"Detected a face, gender:{gender}, age: {age}") response = library.vision_analyze( image_url=URL_TO_IMAGE, visual_features="Faces,ImageType", ) meta = response['metadata'] print( f"Image dimensions meta['width']}x{meta['height']} pixels" ) for face in response["faces"]: left = face["faceRectangle"]["left"] top = face["faceRectangle"]["top"] width = face["faceRectangle"]["width"] height = face["faceRectangle"]["height"] print(f"Detected a face, gender:{face['gender']}, age: {face['age']}") print(f" Face rectangle: (left={left}, top={top})") print(f" Face rectangle: (width={width}, height={height})") library.text_to_speech( text="Developer tools for open-source RPA leveraging the Robot Framework ecosystem", neural_voice_style="cheerful", target_file='output.mp3' )
- ROBOT_LIBRARY_DOC_FORMAT = 'REST'
- ROBOT_LIBRARY_SCOPE = 'GLOBAL'